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Abstract

Life is filled with uncertainty and risk. The analysis of lifetime is needed to be a tool that can manage uncertainty. Lifetime is
defined as data that contains the time until the occurrence of an event. Based on its definition, lifetime data is like Hazard rate
data or mortality data because mortality data can be defined as data that contains the probability of an object surviving until that
moment per unit time interval. The analysis of mortality data aims to model the distribution of time to event and/or the
determinants of time to event. One of the distribution models that can be used to analyze mortality data is Weibull distribution.
However, the Weibull distribution is not very suitable for modeling the more complex versions of data. Therefore, an extension of
the Weibull distribution that is more flexible in modeling data is used, namely the Extended Exponential Weibull (EXEW)
distribution. The EXEW distribution has four parameters whose estimation can be calculated using the maximum likelihood
estimation (MLE) method. However, parameters estimated with MLE are often too difficult to calculate analytically, hence the
use of optimization methods. One of the optimization methods that can be used to determine the estimated parameters of the
EXEW distribution is the conjugate gradient method. To date, many conjugate gradient methods have been developed, including
the Liu-Feng-Zou (LFZ) spectral conjugate gradient method and the Jian-Yang-Jiang-Liu-Liu (JYJLL) spectral conjugate
gradient method. Previous research suggests that the JYJLL spectral conjugate gradient method has more efficient computational
performance than the LFZ spectral conjugate gradient method. Through data simulation, this study provides results that the
JYJLL spectral conjugate gradient conjugate method has better accuracy than the LFZ spectral conjugate gradient method in
parameter estimation of the EXEW distribution. In addition, the EXEW distribution is the most suitable distribution in modeling
various forms of Hazard rate data compared to the Weibull and exponential distributions.
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1. Introduction

Lifetime data are defined as data that contain the time until a particular event occurs (Ahmad et al., 2020). Based on
this definition, lifetime data are like hazard rate or mortality data. The hazard rate is defined as the probability that an
object survives up to a certain time per unit of time interval (Kumar, 2023). Therefore, mortality data can be
interpreted as data representing the probability that an object survives up to a certain point in time per unit interval.

Analyzing lifetime data is a powerful tool for prediction, especially when used to model probability distributions. In
the context of mortality data, distribution modeling can provide insights into the likelihood of component failure or
individual death at specific points in time. As such, the hazard rate becomes essential for observing mortality patterns.
When predicting data over a specific time frame, it is necessary to determine the best-fitting method to identify the
most appropriate probability density function (PDF) and estimate its parameters to plot the hazard rate (Calixto, 2016).

Various probability models exist to model lifetime data, such as the Weibull and exponential distributions (Nasiru
et al., 2019). However, in many cases, these models are no longer optimal or adequate. Given the diverse nature of
mortality data, the selection and development of appropriate distributions have become a key focus in research to
enable accurate data analysis. Hence, efforts continue to develop new distributions that can model lifetime data with
greater accuracy (Mastor et al., 2022).

The Weibull distribution is among the most well-known models for modeling lifetime data such as mortality
(Matsushita et al., 1992). Its primary advantage lies in its flexibility to mimic other distributions, such as the normal or
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exponential distribution, and its ease of interpretation through its PDF and cumulative distribution function. Its
parameters are easily determined and flexible, supporting the use of Weibull distribution in modeling various datasets.
Furthermore, its ability to model skewed density functions makes it particularly suitable for modeling monotonic
hazard rates (He et al., 2020).

Aside from the Weibull distribution, other models for lifetime data include the exponential, linear failure rate
(LFR), and Rayleigh distributions (Cordeiro et al., 2011). However, these models are typically suitable only for
specific forms of hazard functions. Thus, the Weibull distribution is often used to generalize such distributions,
allowing it to accommodate constant, increasing, or decreasing hazard rates. As the field progresses, numerous new
distributions have been proposed to address various types of hazard shapes. Motivated by this, Cordeiro et al. (2014)
introduced the Exponential Weibull (EW) distribution, developed by generalizing the random variables from the
Weibull and exponential distributions. This model offers enhanced flexibility, allowing it to better accommodate more
complex datasets.

It is important to note that the exponential distribution is commonly used to model the time between events in a
Poisson process, while the Weibull distribution is used to analyze time-to-failure data. Accordingly, the Exponential
Weibull random variable can be interpreted as the time to the nearest failure (Cordeiro at al., 2014).

Advancements in the Weibull distribution have inspired the use of various new techniques, including parameter
induction methods. Parameter induction introduces one or more shape parameters into an existing distribution,
enhancing its flexibility—particularly in handling more complex hazard shapes. Following this approach, this study
explores a new probability distribution—the Extended Exponential Weibull (EXEW) distribution—as a modified form
of the Exponential Weibull distribution. The approach uses the Lehmann Alternative Type Il (LA-11) method, one of
the key methods for developing exponential-type distribution families. LA-II is applied to the EXEW distribution to
improve its ability to handle more complex hazard rate behaviors (Tahir & Nadarajah, 2015).

By using the LA-IlI parameter induction method, the EXEW distribution can accommodate monotonic, non-
monotonic, and constant hazard rates. While the traditional Weibull distribution effectively models skewed densities,
its generalization—the EXEW distribution—offers greater adaptability, particularly in representing a wider range of
kurtosis (peakedness) levels. This advantage will be demonstrated by modeling a real-world dataset, namely airplane
windshield failure rate data.

The dataset will be fitted to the EXEW distribution to estimate its parameters. Optimal parameter estimation is
essential for accurately modeling the available data. One of the most used techniques for parameter estimation is
Maximum Likelihood Estimation (MLE). As the name suggests, MLE maximizes the likelihood function to estimate
parameters based on the observed data. The likelihood function represents the joint probability of all data given the
parameters to be estimated (Klugman et al., 2012).

In practice, analytically solving the MLE equations for parameter estimation can be challenging. Thus, numerical
methods are often employed to support MLE computations. One such numerical method is the conjugate gradient
method, widely used for large-scale optimization problems due to its low iteration count, fast convergence, and
minimal memory requirements (Hestenes & Stiefel, 1952). Among its variants is the spectral conjugate gradient
method, first proposed by Birgin & Martinez (2001), which generalizes traditional conjugate gradient approaches. The
primary difference lies in its search direction, which includes an additional spectral parameter. This spectral parameter
enhances flexibility and has been shown to produce more decreasing values per iteration compared to standard
conjugate gradient methods.

Several forms of the spectral conjugate gradient method exist, including the Liu-Feng-Zou (LFZ) conjugate
gradient method and the Jian-Yang-Jiang-Liu-Liu (JYJLL) conjugate gradient method. The LFZ method, introduced
by Liu, Feng, & Zou (2019), was among the earliest spectral conjugate gradient methods, designed to simplify the
selection of conjugate direction coefficients. Each coefficient is uniquely defined by iteration based on the method
used. The LFZ method's strength lies in its effectiveness in simulating various other conjugate gradient methods and
its consistently descending search direction regardless of the line search technique. However, the LFZ method remains
somewhat susceptible to errors at each iteration.

To address these limitations, Jian et al. (2020) proposed the JYJLL spectral conjugate gradient method as a safer
and more efficient alternative. Its key advantage lies in the addition of a spectral parameter that reduces the number of
iterations, thus accelerating the computation process.

In previous studies, comparisons have been made between the efficiency of the LFZ and JYJLL methods,
demonstrating that the JYJLL method offers superior computational performance. However, those studies did not
investigate the accuracy of the two methods. Therefore, this research focuses on analyzing the accuracy performance
of the JYJLL and LFZ spectral conjugate gradient methods in supporting MLE for parameter estimation in the EXEW
distribution.

The analysis is carried out through simulation using datasets from three distributions, and accuracy is measured
using Root Mean Square Error (RMSE). In addition, the Kolmogorov-Smirnov test is applied to evaluate the
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goodness-of-fit of the EXEW, Weibull, and exponential distributions to real-world mortality data (airplane windshield
failure rate). Finally, the best-fitting model among the three competing distributions is selected using model selection
criteria: Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC).

2. EXEW Distribution and MLEs of the Parameters

The Extended Exponential Weibull (EXEW) distribution was first discovered by Mastor et al. (2022). The EXEW
distribution is an extension of the exponential Weibull using the Lehmann alternative Il (LA-2) parameter induction
technigue. Inducing one or more shape parameters to a family of distributions helps the exponential distribution
family to be more flexible in its use. The EXEW distribution, which is a generalization of the exponential Weibull
distribution, is formulated using the LA-2 approach with the addition of one shape parameter.

Suppose a random variable X ~ ExEW (a, b, ¢, «). The cumulative distribution function of the EXEW distribution
is constructed using the Lehmann Il technique on the cumulative distribution function EXEW as follows:

Fy pxpw(x) =1— [1 - (1 - e_(a“bxc))]a =1—[1—Fxpw(@)]*=1- [3_(ax+bxc)]a,x >0,
where a > 0,a > 0, and ¢ > 0 are shape parameters and b > 0 is the scale paremeter. Then, the probability density

function of the EXEW distribution is constructed by differentiating the cumulative distribution function of EXEW with
respect to x as follows:

c c C -1
fe(x) = ﬁ[l _ o—(ax+bx )]“ = a[(a + bex®1)e~(@x+bx)|[g=(ax+bx )]“ x>0.
Meanwhile, the survival function and hazard function are respectively defined as follows:

(O af(at bexe-1ye-@ a0
S(x) [e—(ax+bx)]a

S(x) =1—F(x) = [e=@x+x9]% n(x) =

In Figures 1 and 2, the density functions (PDF) and hazard functions (HF) are presented for several values of the
parameter.
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Figure 1: Density of the EXEW distribution
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Figure 2: Hazard of the EXEW distribution

Based on the selection of parameters in Figure 1, the shape of the EXEW probability density function varies,
namely symmetric, asymmetric, unimodal, J, and reversed J forms. Note that the smaller the values of parameters
a, b, and a, the more left the curve is skewed and the steeper the curve formed. Meanwhile, the larger the value of
parameter ¢, the more left the curve is skewed. The plot form of the hazard function can be increasing, decreasing,
constant, J, and reversed J.

The estimation of EXEW distribution parameters is done using the Maximum Likelihood Estimation (MLE)
method. Suppose x4, x5, ..., x; are the observed values of random samples X3, X,, ..., X; which are distributed EXEW
with parameter vector ¢ = (a, b, c,a) and probability density function f(x; ¢). The likelihood and log-likelihood
functions are obtained as follows:

n

n
L(¢) = ane—Z?:i(axﬁbxf) . 1_[ (a + bei(C_l)) . n[e—(axﬁbxf)](“_l).
i=i
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Next, the likelihood function is expressed in natural logarithm form to find the values a, b, ¢, and a that maximize
the likelihood function. The In likelihood function is obtained as follows:

l(p)=nlna—aXl (ax; + bx{) + X In (a+bcx(c 1)) €8]

Then, the estimated values for parameters a, b, ¢, and a are obtained by maximizing the form [(¢). These values
are obtained by finding the first partial derivative of [(¢) with respect to , b, ¢, and @ which are then equated to zero.

As follows:
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. Zl(axi + bx{) = 0.
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The partial derivatives of the four parameters are not explicit, so it is necessary to use a numerical method in

estimating the parameters. The numerical method used is the JYJLL spectral conjugate gradient method which is then
compared with the LFZ spectral gradient conjugate method.

3. The Spectral Conjugate Gradient Method for Estimating EXEW Parameters

The spectral conjugate gradient method is one of the gradient-based iterative optimization methods that can be used
to solve nonlinear optimization problems. This method uses the iterative formula:

Xk+1 = Xg + akdk, k = 0, 1, 2, (2)

where x; is the point at the kth iteration, x;,, denotes the (k + 1)th iteration, a; > 0 denotes the step length and can
be calculated using various methods (exact or inexact line search), and d;, denotes the search direction as follows:

- st @
T =Okgk + Brdi-1, k=1,

where g, = g(xx) = Vf(xy) is the gradient of the objective function at the point x;, 6y is the spectral scalar, and
Br is a scalar representing the conjugate direction coefficient, determined by various types of conjugate gradient
methods. The point x4 is updated iteratively so that, in each iteration, the value of the objective function is lower
than in the previous one (in the case of minimization). This process continues using new approximation points until a
point x* is obtained that minimizes the objective function and/or until the stopping criterion is satisfied.
Until now, many researchers have proposed various spectral conjugate gradient methods. Among them is the LFZ and
JYJLL spectral conjugate gradient methods.

The LFZ spectral gradient conjugate method was proposed by Liu et al. (2019) with the aim of creating a spectral
search direction that satisfies the sufficient descent condition:

ghde < —Cligel>, k= 0,1,2,...
for C = 1. The form of the parameter ), in the search direction (3) for the LFZ method is defined as follows:

GI%FZ — _gg—ldk—l + ﬁk glzdk—l
l1gre-1lI? llgrell?

and fy is given by

LFZ _ g ll® . 9 Gk — Gr-1)) g ll?
K~ =max T, minymax 0, > , > ("
g1l lgr—1l lgr-1l

The LFZ method was proposed for its ability to guarantee the descent property without relying on any line search
rule, offering computational efficiency and strong performance for quadratic or near-quadratic problems. However, it
has limitations in maintaining search direction stability and achieving fast convergence in more complex non-
quadratic problems. To address these issues, the JYJLL method was developed by modifying the spectral parameter
through a combination of Improve-Fletcher-Reeves and Improve-Dai-Yuan (IFR-IDY) conjugate gradient methods
(masukkan), thereby producing more stable search directions, ensuring a more consistent descent property, and
improving convergence across various optimization problems. In the JYJLL spectral conjugate gradient method, the
parameter 6, and B, used in the search direction in (3) is defined as follows, respectively.

Td _ |
9]Y]LL:1+|gkk1’ 4
k _gz_ldk—l ( )
Ta, 2
- mut%
JYJLL _ k—1 (5)

k ~ max{lgk-112.dh_, (Gr—gr-1)}
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After explaining the JYLL spectral conjugate gradient method, the following are the steps for using the JYJLL
conjugate gradient method to determine the maximum likelihood parameter estimates of the EXEW distribution:
e Step O: Initialization
Set the starting point starting point x, = (ao, by, ¢y, @) and objective function f(a,b,c,a) = —l(a, b, c, @),
where [ is log-likelihood function as in (1).
e Step 1: Calculate Gradient
The gradient of the objective function is given by

n n 1
—aZx- + 27_
/al(a b,c, a)\ S Lia+ bexTY
n n (c-1)
cx;
Ial(abca) I —a xH.Zﬁ
Vf(a,b,c,a) = —Vi(a,b,c,a) = — | ob | = n =1 fl at bex, .
Ial(abca)I Ebc | +b2 cx(c 1) lnxl+x(c 1)
—a xf - Inx;
AT ' - ax; +bcx(c 2
\al(a b,c, a)} i=1 =

— Z(axi + bxf)

i=1

If |[Vf(a,b,c,a)|| < 107°, then stop and x;, is the optimal vector. If not, then proceed to the next step.
e Step 2: Determining Search Direction

» Ifk=0,thend, =—go =—-Vf(a,b,c,a) =Vi(a,b,c, a).

= If k>0, then dy = -0 g + gl dyy = 07 VI(a,b,c, @) + B di—y, where 6] and
JYILL are given in (4) and (5), respectively.

e Step 3: Determining Step Length
Determine a;, using golden section search to minimize f(x;, + a,dy).

e Step 4: Update Point
Update the points using the iterative formula (2). Increase the indeks k = k + 1, then return to step 2 until
the stopping criterion is reached.

By following the steps outlined above, the JYJLL conjugate spectral gradient method can be utilized to help
calculate the maximum likelihood values of the EXEW distribution parameters. This approach can also be applied in a
similar manner to the LFZ conjugate spectral gradient method in estimating the maximum likelihood parameters of
the EXEW distribution.

4. Results and Discussion

To evaluate the effectiveness and accuracy of the proposed parameter estimation methods, this study employs a
two-stage approach: simulation and real data application. The simulation study is conducted to assess the performance
of the spectral conjugate gradient methods—specifically the JYJLL spectral conjugate gradient method—in a
controlled environment where the true parameters are known. This enables a precise comparison of the accuracy and
stability of both methods using Root Mean Square Error (RMSE) as the performance metric.

Following the simulation analysis, the methods are further validated through application to a real-world dataset: the
airplane windshield failure rate data. This empirical analysis aims to demonstrate the practical applicability of the
Extended Exponential Weibull (EXEW) distribution in modeling actual lifetime data and to assess the model fit using
standard statistical criteria such as the Kolmogorov—-Smirnov (K-S) test, Akaike Information Criterion (AIC), and
Bayesian Information Criterion (BIC).

The simulation begins by generating random data using RStudio software which is then substituted into the EXEW
log-likelihood function. Then, the log-likelihood function is maximized (or minimized the negative log-likelihood
function) with the same software using both the JYJLL and LFZ conjugate gradient methods. The parameter
estimation results from both methods are compared using Rooted Mean Square Error (RMSE).

The random data generation process is carried out by following the guidelines from the journal "New Extension of
Burr Type X Distribution Properties with Application™ by Khaleel, et al. (2018). This process involves the inverse
CDF form of the EXEW distribution and assumes that the parameter values can be generated randomly with an EXEW
distribution. In this simulation, the parameter pairs used are obtained from the journal "The Extended Exponential
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Weibull Distribution: Properties, Inference, and Applications to Real-Life Data" by Mastor et al. (2022). There are
two pairs used, namely set 1: (a,b,c,a) =(1,1,1.5,0.12) and set 2: (a,b,c,a) = (1,1,1.5,0.14). In this
simulation, the sample sizes used are 25, 50, 75, 100, 150, 200, and 300.

After generating the simulation data, the data are substituted into the log-likelihood function of the EXEW
distribution to estimate the parameters a, b, ¢, and a. With the help of Rstudio software, the log-likelihood function is
optimized using two conjugate spectral gradient methods, namely JYJLL and LFZ. The goal is to obtain estimates of

the MLE parameters denoted as @, b, ¢ , and @&.
4.1.1. Parameter Estimation Results

RMSE is an evaluation criterion used in this study to compare the results of parameter estimation from simulations.
Since parameter estimation is performed 500 times, then for each conjugate spectral gradient method, estimation
replication is performed 500 times.

Tables 1 and 2 present the average simulation results from 500 iterations of estimation for the set 1 along with their
RMSE with the JYJLL and LFZ spectral gradient conjugate methods and Figure 5 shows the comparison.

Table 1: Simulation results of set 1 with the JYJLL spectral gradient conjugate method for 500 iterations

n a b é a RMSEd@ RMSEb RMSE¢ RMSEG@
25 0.441 0.3619 1.5817 0.352 0.6726 0.7209 0.6797 0.2577
50 0.4236 0.4145 1.5659 0.3347 0.6714 0.7151 0.537 0.2382
75 0.4185 0.4392 1.5477 0.3286 0.6873 0.6746 0.454 0.3052

100 0.4363 0.4533 1.6051 0.3074 0.6391 0.789 0.4029 0.2072
150 0.4105 0.4894 1.5619 0.3074 0.7348 0.7094 0.3541 0.2137
200 0.4349 0.4341 1.5879 0.2969 0.6858 0.6265 0.3413 0.1896
300 0.4331 0.4612 1.5724 0.2877 0.6596 0.6283 0.2558 0.1768

Average 0.6787 0.6948 0.4321 0.2269

Table 2: Simulation results of set 1 with the LFZ spectral gradient conjugate method for 500 iterations

=

n a b ¢ a RMSE4 RMSEbh RMSEé RMSE@
25 0.6578 0.928 2.0362  0.2398 0.9098 1.7188 1.5647 0.1971
50 0.6284  0.9274  1.9302  0.2466 0.5905 1.4258 1.281 0.4038
75 0.6568  1.2605  1.7748  0.2607 0.6061 3.0262 0.9656 0.4993
100 0.6656  1.0197  1.7667  0.2321 0.5452 1.4918 0.8208 0.368
150 0.7074  1.1741  1.6583  0.2151 0.8312 1.9511 0.5947 0.3636
200 0.7597  1.0289  1.6491  0.1821 1.1438 3.3023 0.5799 0.1242
300 0.7104  1.2401 15673  0.1941 0.8633 1.9203 0.5125 0.2926

Average 0.7843 1.8338 0.9028 0.3212

RMSE
RMSE
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Figure 5: RMSE per Parameter of the JYJLL (blue) and LFZ (red) Conjugate Spectral Gradient Methods for Set 1

Tables 3 and 4 present the average simulation results from 500 iterations of estimation for the set 2 along with their
RMSE with the JYJLL and LFZ spectral gradient conjugate methods and Figure 6 shows the comparison.

Table 3: Simulation results of set 2 with the JYJLL spectral gradient conjugate method for 500 iterations

n a b é a RMSEd4 RMSEb RMSE¢ RMSEG@
25 0.3948 0.4398 1.7090 0.3652 0.7062 0.7008 0.6908 0.2527
50 0.4291 0.4274 1.7532 0.3533 0.6608 0.6750 0.6260 0.2383
75 0.3996 0.4612 1.6898 0.3462 0.6800 0.6637 0.4951 0.2281
100 0.3873 0.4868 1.6423 0.3436 0.6920 0.6049 0.4318 0.2241
150 0.4289 0.4937 1.6248 0.3247 0.6649 0.6159 0.3757 0.2037
200 0.4300 0.5131 1.5846 0.3214 0.6395 0.6473 0.3078 0.1993
300 0.4718 0.4849 1.5727 0.3182 0.6545 0.6046 0.2762 0.1934

Average 0.6711 0.6446 0.4576 0.2200

Table 4: Simulation results of set 2 with the LFZ spectral gradient conjugate method for 500 iterations

n a b ¢ @ RMSE4@ RMSEb RMSE¢ RMSEQ
25 0.5567 1.1554 2.1864 0.2774 0.7168 1.8082 1.7081 0.4588
50 0.6068 1.0370 2.0044 0.2434 0.7768 1.1744 1.2371 0.2501
75 0.5418 1.1959 1.7892 0.2289 0.6711 1.1841 1.0262 0.1885
100 0.5329 1.1552 1.7008 0.2221 0.7009 1.1435 0.8013 0.1772
150 0.6705 1.1561 1.6481 0.2052 1.1649 1.0144 0.6200 0.1267
200 0.6040 1.2129 1.5552 0.2078 1.0015 1.6429 0.4657 0.1420
300 0.6279 1.2387 1.4974 0.1938 1.5366 1.4217 0.3772 0.1085

Average 0.9384 1.3452 0.8908 0.2074
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Figure 6: RMSE per Parameter of the JYJLL (blue) and LFZ (red) Conjugate Spectral Gradient Methods for Set 2
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Based on Table 1, Table 2, Table 3, Table 4, Figure 5 and Figure 6, the following is an analysis based on the
RMSE value of the estimated parameters a, b, ¢, and « using the JYJLL and LFZ spectral gradient conjugate methods:
e For parameter a, the JYJLL method has a lower RMSE value compared to the LFZ method for sample sizes n =

25, 50, 100, 150, 200 and 300. Based on Table 3 and Table 4, the average RMSE for all sample sizes n can be
seen. The average RMSE for the JYJLL method is 0.6787 (set 1) and 0.6711 (set 2) and the average RMSE for
the LFZ method is 0.7843 (set 1) and 0.9384 (set 2). Thus, it is obtained that the JYJLL method is better in
estimating the parameter for the EXEW distribution compared to the LFZ method. Based on Figure 5 and Figure
6, it is obtained that the JYJLL method is more stable than the LFZ method.

e For parameter b, the JYJLL method has a lower RMSE value compared to the LFZ method for all sample sizes n.
Based on Table 3 and Table 4, the average RMSE for all sample sizes n can be seen. The average RMSE for the
JYJLL method is 0.6948 (set 1) and 0.6446 (set 2) and the average RMSE for the LFZ method is 1.8338 (set 1)
and 1.3452 (set 2). Thus, it is obtained that the JYJLL method is better at estimating the b parameter for the
EXEW distribution compared to the LFZ method. Based on Figure 5 and Figure 6, it is obtained that the LFZ
method is unstable, meanwhile, the JYJLL method is more stable for all sample sizes n.

e For parameter c, the JYJLL method has a lower RMSE value compared to the LFZ method for all sample sizes n.
Based on Table 3 and Table 4, the average RMSE for all sample sizes n can be seen. The average RMSE for the
JYJLL method is 0.4321 (set 1) and 0.4576 (set 2) and the average RMSE for the LFZ method is 0.9028 (set 1)
and 0.8908 (set 2). Thus, it is obtained that the JYJLL method is better at estimating parameter ¢ for the EXEW
distribution compared to the LFZ method. Based on Figure 5 and Figure 6, it is obtained that both methods
experience a decrease along with the increasing number of samples n, with the RMSE value of the JYJLL method
being smaller than the LFZ method. This shows that the estimation of parameter c is increasingly accurate with
increasing sample size.

e For parameter a, the JYJLL method has a higher RMSE value compared to the LFZ method for sample sizes n =
25 and 100 (set 1) as well as for n = 75, 100, 150, 200 and 300 (set 2). Based on Table 3 and Table 4, the average
RMSE for all sample sizes n can be seen. The average RMSE for the JYJLL method is 0.2269 (set 1) and 0.2200
(set 2) and the average RMSE for the LFZ method is 0.3212 (set 1) and 0.2074 (set 2). Thus, it is obtained that the
JYJLL method is slightly worse in estimating the a parameter for the EXEW distribution compared to the LFZ
method in set 2. However, based on Figure 5 and Figure 6, it is obtained that the JYJLL method remains more
stable than the LFZ method.

Overall, the JYJLL spectral gradient conjugate method shows better and more consistent performance in estimating
parameters a, b, and c. The LFZ method tends to have higher and unstable RMSE values for all parameters, except
for parameter a. However, this indicates that the JYJLL method can be more reliable in estimating EXEW distribution
parameters. It can be obtained that the results of both simulations show that the JYJLL spectral gradient conjugate
method is better than the LFZ spectral gradient conjugate method in estimating the EXEW distribution parameters. In
the next part, the JYJLL method is used to estimate the parameter values from real data.

4.2. Application in Airplane Windshield Failure Rate Data

Previously, a parameter estimation simulation of the EXEW distribution was carried out using the JYJLL method.
Obtained from the analysis carried out, the JYJLL method provides better estimation results compared to the LFZ
method. Therefore, the application of the EXEW model to real data uses the JYJLL method. In this section, the
EXEW distribution is applied to simulation data that represents the airplane windshield failure rate. Failure rate is a
measure used to describe the frequency of failure of an engineered system or component. Usually defined as the
number of failures per unit time. Data obtained from the journal "The Extended Exponential Weibull Distribution:
Properties, Inference, and Applications to Real-Life Data™, 2022, which consists of 84 data.

Table 5: 84 Airplane Windshield Failure Rate Data (Thousands of Hours)

Data No Data No Data No Data No Data No Data No Data No Data
0.04 12 1866 23 238 34 3443 45 0301 55 1876 65 2481 75 3.467
0.309 13 1.899 24 2.61 35 3478 46 0557 56 1911 66 2625 76 3.578
0.943 14 1912 25 2632 36 3.595 47 1.07 57 1914 67 2646 77 3.699
1.124 15 1981 26 2661 37 3779 48 1248 58 2.01 68 2688 78 3924
1.281 16 2.038 27 2823 38 403 49 1281 59 2085 69 2.89 79 4121
1.303 17 2.089 28 2902 39 4167 50 1432 60 2097 70 2934 80 4,24
1.48 18 2135 29 2962 40 4255 51 1505 61 2154 71 2964 81 4.278
1.506 19 219 30 3.0 41 4305 52 1568 62 2194 72 3103 82 4.376
1.615 20 2223 31 3114 42 4449 53 1619 63 2224 73 3117 83 4.485
1.652 21 2229 32 3166 43 457 54 1652 64 2.3 74 3344 84 4.602
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11 1.757 22 2324 33 3376 44 4.663

The following provides descriptive statistics of the failure rate data in Table 5.

Table 6: Descriptive Statistics of Failure Rate Data

Descriptive
Statistics Value
Mean 2.55745
Median 2.3545
Modus 2.25
Variance 1.25177
Skewness 0.09949
Kurtosis -0.65232
Min 0.04
Max 4.663

From Table 6, the difference between the median and mean values shows that the data distribution approaches a
symmetrical shape. In addition, the skewness coefficient of 0.09949 indicates that the data tends to skew to the right.
Kurtosis with a value of -0.65232 describes a flatter distribution curve shape compared to the normal distribution.
Therefore, the data is suitable for modeling with the EXEW distribution. In addition, the data is also modeled with
several other distributions, namely the Weibull distribution and the exponential distribution. The parameter
estimation of these distributions is carried out using the MLE method with the help of the JYJLL spectral gradient
conjugate method in RStudio software. The results of the EXEW, Weibull, and exponential distribution parameter
estimates can be seen in Table 7 below.

Table 7: Parameter Estimator for Distributions Modeling Airplane Windshield Failure Rate Data

Model Distribution Estimator Estimation Results
Extended a 0.7911
exponential Weibull b 0.5580
(EXEW) ¢ 2.9316

a 0.0645

Weibull a 0.0823
b 2.3744

Exponential a 0.3910

After obtaining parameter estimates from the EXEW, Weibull, and exponential distributions. Next, a model fit test
is carried out on the data using the Kolmogorov-Smirnov test. In this case, the EXEW and Weibull distributions
proven to be good in modeling airplane windshield failure rate data based on the Kolmogorov-Smirnov goodness-of-
fit test. It has been found that the EXEW and Weibull distributions are suitable for modeling airplane windshield
failure rate data. Therefore, it is necessary to select the best model. The first step taken in this study is to see the
comparison of the PDF graphs of the EXEW and Weibull distribution models against the histogram of airplane
windshield failure rate data. For the comparison of the PDF graph and data histogram, it can be seen in Figure 7 that
the EXEW and Weibull distributions have almost the same graphs. It can also be seen from the shape of the data
histogram, that the EXEW PDF graph is better at modeling airplane windshield failure rate data compared to the
Weibull distribution. Then, seen from the comparison of the CDF graphs in Figure 7, the CDF that most closely
matches the empirical CDF shape is the EXEW CDF. Therefore, with the graphical approach step, it can be obtained
that the EXEW distribution is better at modeling airplane windshield failure rate data.
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Figure 7: RMSE Comparison of PDF (left) and CDF (right) Plots of EXEW and Weibull Distributions with
Histogram of Data

Next, the best model is selected by looking at the information criteria, namely AIC and BIC. The smaller the AIC and
BIC values, the better the model is at modeling the data. Here are the AIC and BIC values for competing
distributions:

Table 8: AIC and BIC Values for Each Distribution

Distribution Model AIC BIC
EXEW 261.3098 261.0069
Weibull 264.1066 263.9552

Based on Table 8 it is obtained that the EXEW distribution has the best AIC and BIC values, which are 261.3098 and
261.0069. Therefore, the EXEW distribution is better at modeling airplane windshield failure rate data compared to
the Weibull distribution and the exponential distribution.

5. Conclussion

Based on the research conducted, the following conclusions can be drawn:

a. The Jian-Yang-Jiang-Liu-Liu (JYJLL) spectral conjugate gradient method has proven to be effective in assisting
the Maximum Likelihood Estimation (MLE) process for estimating the parameters of the Extended Exponential
Weibull (EXEW) distribution. In data simulation studies, this method demonstrated strong performance, as
indicated by low Root Mean Square Error (RMSE) values, even as the sample size increased.

b. A comparative analysis of the JYJLL and Liu-Feng-Zou (LFZ) spectral conjugate gradient methods in simulation
scenarios shows that the JYJLL method outperforms the LFZ method in parameter estimation. This is evidenced
by the lower and more stable RMSE values obtained using the JYJLL method compared to the LFZ method.

c. The distributional goodness-of-fit tests indicate that the EXEW distribution is the most suitable model for the
given dataset compared to the competing distributions. This conclusion is supported by a Kolmogorov—-Smirnov
(K-S) test statistic below the critical value and the lowest AIC and BIC values among all candidate distributions.
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