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Abstract 

Life is filled with uncertainty and risk. The analysis of lifetime is needed to be a tool that can manage uncertainty. Lifetime is 

defined as data that contains the time until the occurrence of an event. Based on its definition, lifetime data is like Hazard rate 

data or mortality data because mortality data can be defined as data that contains the probability of an object surviving unt il that 

moment per unit time interval. The analysis of mortality data aims to model the distribution of time to event and/or the 

determinants of time to event. One of the distribution models that can be used to analyze mortality data is Weibull distribut ion. 

However, the Weibull distribution is not very suitable for modeling the more complex versions of data. Therefore, an extension of 

the Weibull distribution that is more flexible in modeling data is used, namely the Extended Exponential Weibull (ExEW) 

distribution. The ExEW distribution has four parameters whose estimation can be calculated using the maximum likelihood 

estimation (MLE) method. However, parameters estimated with MLE are often too difficult to calculate analytically, hence the 

use of optimization methods. One of the optimization methods that can be used to determine the estimated parameters of the 

ExEW distribution is the conjugate gradient method. To date, many conjugate gradient methods have been developed, including 

the Liu-Feng-Zou (LFZ) spectral conjugate gradient method and the Jian-Yang-Jiang-Liu-Liu (JYJLL) spectral conjugate 

gradient method. Previous research suggests that the JYJLL spectral conjugate gradient method has more efficient computational 

performance than the LFZ spectral conjugate gradient method. Through data simulation, this study provides results that the 

JYJLL spectral conjugate gradient conjugate method has better accuracy than the LFZ spectral conjugate gradient method in 

parameter estimation of the ExEW distribution. In addition, the ExEW distribution is the most suitable distribution in modeling 

various forms of Hazard rate data compared to the Weibull and exponential distributions. 
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1. Introduction  

Lifetime data are defined as data that contain the time until a particular event occurs (Ahmad et al., 2020). Based on 

this definition, lifetime data are like hazard rate or mortality data. The hazard rate is defined as the probability that an 

object survives up to a certain time per unit of time interval (Kumar, 2023). Therefore, mortality data can be 

interpreted as data representing the probability that an object survives up to a certain point in time per unit interval. 

Analyzing lifetime data is a powerful tool for prediction, especially when used to model probability distributions. In 

the context of mortality data, distribution modeling can provide insights into the likelihood of component failure or 

individual death at specific points in time. As such, the hazard rate becomes essential for observing mortality patterns. 

When predicting data over a specific time frame, it is necessary to determine the best-fitting method to identify the 

most appropriate probability density function (PDF) and estimate its parameters to plot the hazard rate (Calixto, 2016). 

Various probability models exist to model lifetime data, such as the Weibull and exponential distributions (Nasiru 

et al., 2019). However, in many cases, these models are no longer optimal or adequate. Given the diverse nature of 

mortality data, the selection and development of appropriate distributions have become a key focus in research to 

enable accurate data analysis. Hence, efforts continue to develop new distributions that can model lifetime data with 

greater accuracy (Mastor et al., 2022). 

The Weibull distribution is among the most well-known models for modeling lifetime data such as mortality 

(Matsushita et al., 1992). Its primary advantage lies in its flexibility to mimic other distributions, such as the normal or 
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exponential distribution, and its ease of interpretation through its PDF and cumulative distribution function. Its 

parameters are easily determined and flexible, supporting the use of Weibull distribution in modeling various datasets. 

Furthermore, its ability to model skewed density functions makes it particularly suitable for modeling monotonic 

hazard rates (He et al., 2020). 

Aside from the Weibull distribution, other models for lifetime data include the exponential, linear failure rate 

(LFR), and Rayleigh distributions (Cordeiro et al., 2011). However, these models are typically suitable only for 

specific forms of hazard functions. Thus, the Weibull distribution is often used to generalize such distributions, 

allowing it to accommodate constant, increasing, or decreasing hazard rates. As the field progresses, numerous new 

distributions have been proposed to address various types of hazard shapes. Motivated by this, Cordeiro et al. (2014) 

introduced the Exponential Weibull (EW) distribution, developed by generalizing the random variables from the 

Weibull and exponential distributions. This model offers enhanced flexibility, allowing it to better accommodate more 

complex datasets. 

It is important to note that the exponential distribution is commonly used to model the time between events in a 

Poisson process, while the Weibull distribution is used to analyze time-to-failure data. Accordingly, the Exponential 

Weibull random variable can be interpreted as the time to the nearest failure (Cordeiro at al., 2014). 

Advancements in the Weibull distribution have inspired the use of various new techniques, including parameter 

induction methods. Parameter induction introduces one or more shape parameters into an existing distribution, 

enhancing its flexibility—particularly in handling more complex hazard shapes.  Following this approach, this study 

explores a new probability distribution—the Extended Exponential Weibull (ExEW) distribution—as a modified form 

of the Exponential Weibull distribution. The approach uses the Lehmann Alternative Type II (LA-II) method, one of 

the key methods for developing exponential-type distribution families. LA-II is applied to the ExEW distribution to 

improve its ability to handle more complex hazard rate behaviors (Tahir & Nadarajah, 2015). 

By using the LA-II parameter induction method, the ExEW distribution can accommodate monotonic, non-

monotonic, and constant hazard rates. While the traditional Weibull distribution effectively models skewed densities, 

its generalization—the ExEW distribution—offers greater adaptability, particularly in representing a wider range of 

kurtosis (peakedness) levels. This advantage will be demonstrated by modeling a real-world dataset, namely airplane 

windshield failure rate data. 

The dataset will be fitted to the ExEW distribution to estimate its parameters. Optimal parameter estimation is 

essential for accurately modeling the available data. One of the most used techniques for parameter estimation is 

Maximum Likelihood Estimation (MLE). As the name suggests, MLE maximizes the likelihood function to estimate 

parameters based on the observed data. The likelihood function represents the joint probability of all data given the 

parameters to be estimated (Klugman et al., 2012). 

In practice, analytically solving the MLE equations for parameter estimation can be challenging. Thus, numerical 

methods are often employed to support MLE computations. One such numerical method is the conjugate gradient 

method, widely used for large-scale optimization problems due to its low iteration count, fast convergence, and 

minimal memory requirements (Hestenes & Stiefel, 1952). Among its variants is the spectral conjugate gradient 

method, first proposed by Birgin & Martinez (2001), which generalizes traditional conjugate gradient approaches. The 

primary difference lies in its search direction, which includes an additional spectral parameter. This spectral parameter 

enhances flexibility and has been shown to produce more decreasing values per iteration compared to standard 

conjugate gradient methods. 

Several forms of the spectral conjugate gradient method exist, including the Liu-Feng-Zou (LFZ) conjugate 

gradient method and the Jian-Yang-Jiang-Liu-Liu (JYJLL) conjugate gradient method. The LFZ method, introduced 

by Liu, Feng, & Zou (2019), was among the earliest spectral conjugate gradient methods, designed to simplify the 

selection of conjugate direction coefficients. Each coefficient is uniquely defined by iteration based on the method 

used. The LFZ method's strength lies in its effectiveness in simulating various other conjugate gradient methods and 

its consistently descending search direction regardless of the line search technique. However, the LFZ method remains 

somewhat susceptible to errors at each iteration. 

To address these limitations, Jian et al. (2020) proposed the JYJLL spectral conjugate gradient method as a safer 

and more efficient alternative. Its key advantage lies in the addition of a spectral parameter that reduces the number of 

iterations, thus accelerating the computation process. 

In previous studies, comparisons have been made between the efficiency of the LFZ and JYJLL methods, 

demonstrating that the JYJLL method offers superior computational performance. However, those studies did not 

investigate the accuracy of the two methods. Therefore, this research focuses on analyzing the accuracy performance 

of the JYJLL and LFZ spectral conjugate gradient methods in supporting MLE for parameter estimation in the ExEW 

distribution. 

The analysis is carried out through simulation using datasets from three distributions, and accuracy is measured 

using Root Mean Square Error (RMSE). In addition, the Kolmogorov–Smirnov test is applied to evaluate the 
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goodness-of-fit of the ExEW, Weibull, and exponential distributions to real-world mortality data (airplane windshield 

failure rate). Finally, the best-fitting model among the three competing distributions is selected using model selection 

criteria: Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). 
 

2. ExEW Distribution and MLEs of the Parameters 

The Extended Exponential Weibull (ExEW) distribution was first discovered by Mastor et al. (2022). The ExEW 

distribution is an extension of the exponential Weibull using the Lehmann alternative II (LA-2) parameter induction 

technique. Inducing one or more shape parameters to a family of distributions helps the exponential distribution 

family to be more flexible in its use. The ExEW distribution, which is a generalization of the exponential Weibull 

distribution, is formulated using the LA-2 approach with the addition of one shape parameter. 

Suppose a random variable                . The cumulative distribution function of the ExEW distribution 

is constructed using the Lehmann II technique on the cumulative distribution function ExEW as follows: 

             [  (            )]
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where          and     are shape parameters and     is the scale paremeter.  Then, the probability density 

function of the ExEW distribution is constructed by differentiating the cumulative distribution function of ExEW with 

respect to   as follows: 
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Meanwhile, the survival function and hazard function are respectively defined as follows: 
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In Figures 1 and 2, the density functions (PDF) and hazard functions (HF) are presented for several values of the 

parameter. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Density of the ExEW distribution 
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Figure 2: Hazard of the ExEW distribution 

Based on the selection of parameters in Figure 1, the shape of the ExEW probability density function varies, 

namely symmetric, asymmetric, unimodal, J, and reversed J forms. Note that the smaller the values of parameters 

     and  , the more left the curve is skewed and the steeper the curve formed. Meanwhile, the larger the value of 

parameter  , the more left the curve is skewed.  The plot form of the hazard function can be increasing, decreasing, 

constant, J, and reversed J. 

The estimation of ExEW distribution parameters is done using the Maximum Likelihood Estimation (MLE) 

method. Suppose              are the observed values of random samples              which are distributed ExEW 

with parameter vector               and probability density function       . The likelihood and log-likelihood 

functions are obtained as follows: 
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Next, the likelihood function is expressed in natural logarithm form to find the values         and   that maximize 

the likelihood function. The    likelihood function is obtained as follows: 
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Then, the estimated values for parameters        and   are obtained by maximizing the form     . These values 
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The partial derivatives of the four parameters are not explicit, so it is necessary to use a numerical method in 

estimating the parameters. The numerical method used is the JYJLL spectral conjugate gradient method which is then 

compared with the LFZ spectral gradient conjugate method. 

3. The Spectral Conjugate Gradient Method for Estimating ExEW Parameters 

The spectral conjugate gradient method is one of the gradient-based iterative optimization methods that can be used 

to solve nonlinear optimization problems. This method uses the iterative formula: 

                                                                                            (2) 

where    is the point at the kth iteration,      denotes the      th iteration,      denotes the step length and can 

be calculated using various methods (exact or inexact line search), and    denotes the search direction as follows: 

   {
        

                 
                                                               (3) 

where                     is the gradient of the objective function at the point   ,    is the spectral scalar, and 

   is a scalar representing the conjugate direction coefficient, determined by various types of conjugate gradient 

methods.  The point      is updated iteratively so that, in each iteration, the value of the objective function is lower 

than in the previous one (in the case of minimization). This process continues using new approximation points until a 

point    is obtained that minimizes the objective function and/or until the stopping criterion is satisfied. 

Until now, many researchers have proposed various spectral conjugate gradient methods. Among them is the LFZ and 

JYJLL spectral conjugate gradient methods.   

The LFZ spectral gradient conjugate method was proposed by Liu et al. (2019) with the aim of creating a spectral 

search direction that satisfies the sufficient descent condition: 
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for    . The form of the parameter    in the search direction (3) for the LFZ method is defined as follows: 
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The LFZ method was proposed for its ability to guarantee the descent property without relying on any line search 

rule, offering computational efficiency and strong performance for quadratic or near-quadratic problems. However, it 

has limitations in maintaining search direction stability and achieving fast convergence in more complex non-

quadratic problems. To address these issues, the JYJLL method was developed by modifying the spectral parameter 

through a combination of Improve-Fletcher-Reeves and Improve-Dai-Yuan (IFR-IDY) conjugate gradient methods 

(masukkan), thereby producing more stable search directions, ensuring a more consistent descent property, and 

improving convergence across various optimization problems.  In the JYJLL spectral conjugate gradient method, the 

parameter    and     used in the search direction in (3) is defined as follows, respectively. 
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After explaining the JYLL spectral conjugate gradient method, the following are the steps for using the JYJLL 

conjugate gradient method to determine the maximum likelihood parameter estimates of the ExEW distribution: 

 Step 0: Initialization 

Set the starting point starting point                  and objective function                       , 
where   is log-likelihood function as in (1). 

 Step 1: Calculate Gradient 

The gradient of the objective function is given by 
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If ‖           ‖      , then stop and    is the optimal vector.  If not, then proceed to the next step. 

 Step 2: Determining Search Direction  

 If    , then                                .   

 If    , then       
     

     
     

       
     

              
     

    , where   
     

 and 

  
     

 are given in (4) and (5), respectively.  

 Step 3: Determining Step Length 

Determine    using golden section search to minimize           . 

 Step 4: Update Point 

Update the points using the iterative formula (2).  Increase the indeks      , then return to step 2 until 

the stopping criterion is reached. 

By following the steps outlined above, the JYJLL conjugate spectral gradient method can be utilized to help 

calculate the maximum likelihood values of the ExEW distribution parameters. This approach can also be applied in a 

similar manner to the LFZ conjugate spectral gradient method in estimating the maximum likelihood parameters of 

the ExEW distribution. 

4. Results and Discussion 

To evaluate the effectiveness and accuracy of the proposed parameter estimation methods, this study employs a 

two-stage approach: simulation and real data application. The simulation study is conducted to assess the performance 

of the spectral conjugate gradient methods—specifically the JYJLL spectral conjugate gradient method—in a 

controlled environment where the true parameters are known. This enables a precise comparison of the accuracy and 

stability of both methods using Root Mean Square Error (RMSE) as the performance metric. 

Following the simulation analysis, the methods are further validated through application to a real-world dataset: the 

airplane windshield failure rate data. This empirical analysis aims to demonstrate the practical applicability of the 

Extended Exponential Weibull (ExEW) distribution in modeling actual lifetime data and to assess the model fit using 

standard statistical criteria such as the Kolmogorov–Smirnov (K–S) test, Akaike Information Criterion (AIC), and 

Bayesian Information Criterion (BIC). 

The simulation begins by generating random data using RStudio software which is then substituted into the ExEW 

log-likelihood function. Then, the log-likelihood function is maximized (or minimized the negative log-likelihood 

function) with the same software using both the JYJLL and LFZ conjugate gradient methods. The parameter 

estimation results from both methods are compared using Rooted Mean Square Error (RMSE). 

The random data generation process is carried out by following the guidelines from the journal "New Extension of 

Burr Type X Distribution Properties with Application" by Khaleel, et al. (2018). This process involves the inverse 

CDF form of the ExEW distribution and assumes that the parameter values can be generated randomly with an ExEW 

distribution. In this simulation, the parameter pairs used are obtained from the journal "The Extended Exponential 
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Weibull Distribution: Properties, Inference, and Applications to Real-Life Data" by Mastor et al. (2022). There are 

two pairs used, namely set 1:                           and set 2:                         . In this 

simulation, the sample sizes used are 25, 50, 75, 100, 150, 200, and 300. 

After generating the simulation data, the data are substituted into the log-likelihood function of the ExEW 

distribution to estimate the parameters      , and  . With the help of Rstudio software, the log-likelihood function is 

optimized using two conjugate spectral gradient methods, namely JYJLL and LFZ. The goal is to obtain estimates of 

the MLE parameters denoted as  ̂  ̂  ̂ , and  ̂. 

4.1.1. Parameter Estimation Results 
 

RMSE is an evaluation criterion used in this study to compare the results of parameter estimation from simulations. 

Since parameter estimation is performed 500 times, then for each conjugate spectral gradient method, estimation 

replication is performed 500 times. 

Tables 1 and 2 present the average simulation results from 500 iterations of estimation for the set 1 along with their 

RMSE with the JYJLL and LFZ spectral gradient conjugate methods and Figure 5 shows the comparison. 

Table 1: Simulation results of set 1 with the JYJLL spectral gradient conjugate method for 500 iterations 

   ̂  ̂  ̂  ̂       ̂       ̂       ̂       ̂ 

25 0.441 0.3619 1.5817 0.352 0.6726 0.7209 0.6797 0.2577 

50 0.4236 0.4145 1.5659 0.3347 0.6714 0.7151 0.537 0.2382 

75 0.4185 0.4392 1.5477 0.3286 0.6873 0.6746 0.454 0.3052 

100 0.4363 0.4533 1.6051 0.3074 0.6391 0.789 0.4029 0.2072 

150 0.4105 0.4894 1.5619 0.3074 0.7348 0.7094 0.3541 0.2137 

200 0.4349 0.4341 1.5879 0.2969 0.6858 0.6265 0.3413 0.1896 

300 0.4331 0.4612 1.5724 0.2877 0.6596 0.6283 0.2558 0.1768 

Average 0.6787 0.6948 0.4321 0.2269 

Table 2: Simulation results of set 1 with the LFZ spectral gradient conjugate method for 500 iterations 

   ̂  ̂  ̂  ̂       ̂       ̂       ̂       ̂ 

25 0.6578 0.928 2.0362 0.2398 0.9098 1.7188 1.5647 0.1971 

50 0.6284 0.9274 1.9302 0.2466 0.5905 1.4258 1.281 0.4038 

75 0.6568 1.2605 1.7748 0.2607 0.6061 3.0262 0.9656 0.4993 

100 0.6656 1.0197 1.7667 0.2321 0.5452 1.4918 0.8208 0.368 

150 0.7074 1.1741 1.6583 0.2151 0.8312 1.9511 0.5947 0.3636 

200 0.7597 1.0289 1.6491 0.1821 1.1438 3.3023 0.5799 0.1242 

300 0.7104 1.2401 1.5673 0.1941 0.8633 1.9203 0.5125 0.2926 

Average 0.7843 1.8338 0.9028 0.3212 
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Figure 5: RMSE per Parameter of the JYJLL (blue) and LFZ (red) Conjugate Spectral Gradient Methods for Set 1 

Tables 3 and 4 present the average simulation results from 500 iterations of estimation for the set 2 along with their 

RMSE with the JYJLL and LFZ spectral gradient conjugate methods and Figure 6 shows the comparison. 

Table 3: Simulation results of set 2 with the JYJLL spectral gradient conjugate method for 500 iterations 

   ̂  ̂  ̂  ̂       ̂       ̂       ̂       ̂ 

25 0.3948 0.4398 1.7090 0.3652 0.7062 0.7008 0.6908 0.2527 

50 0.4291 0.4274 1.7532 0.3533 0.6608 0.6750 0.6260 0.2383 

75 0.3996 0.4612 1.6898 0.3462 0.6800 0.6637 0.4951 0.2281 

100 0.3873 0.4868 1.6423 0.3436 0.6920 0.6049 0.4318 0.2241 

150 0.4289 0.4937 1.6248 0.3247 0.6649 0.6159 0.3757 0.2037 

200 0.4300 0.5131 1.5846 0.3214 0.6395 0.6473 0.3078 0.1993 

300 0.4718 0.4849 1.5727 0.3182 0.6545 0.6046 0.2762 0.1934 

Average 0.6711 0.6446 0.4576 0.2200 

Table 4: Simulation results of set 2 with the LFZ spectral gradient conjugate method for 500 iterations 

   ̂  ̂  ̂  ̂       ̂       ̂       ̂       ̂ 

25 0.5567 1.1554 2.1864 0.2774 0.7168 1.8082 1.7081 0.4588 

50 0.6068 1.0370 2.0044 0.2434 0.7768 1.1744 1.2371 0.2501 

75 0.5418 1.1959 1.7892 0.2289 0.6711 1.1841 1.0262 0.1885 

100 0.5329 1.1552 1.7008 0.2221 0.7009 1.1435 0.8013 0.1772 

150 0.6705 1.1561 1.6481 0.2052 1.1649 1.0144 0.6200 0.1267 

200 0.6040 1.2129 1.5552 0.2078 1.0015 1.6429 0.4657 0.1420 

300 0.6279 1.2387 1.4974 0.1938 1.5366 1.4217 0.3772 0.1085 

Average 0.9384 1.3452 0.8908 0.2074 

 

 

Figure 6: RMSE per Parameter of the JYJLL (blue) and LFZ (red) Conjugate Spectral Gradient Methods for Set 2 

 



                Tjayadi et al. / International Journal of Mathematics, Statistics, and Computing, Vol. 3, No. 4, pp. 165-176, 2025                  173 

 

 

Based on Table 1, Table 2, Table 3, Table 4, Figure 5 and Figure 6, the following is an analysis based on the 

RMSE value of the estimated parameters      , and   using the JYJLL and LFZ spectral gradient conjugate methods: 

 For parameter  , the JYJLL method has a lower RMSE value compared to the LFZ method for sample sizes    

25, 50, 100, 150, 200 and 300. Based on Table 3 and Table 4, the average RMSE for all sample sizes   can be 

seen. The average RMSE for the JYJLL method is 0.6787 (set 1) and 0.6711 (set 2) and the average RMSE for 

the LFZ method is 0.7843 (set 1) and 0.9384 (set 2). Thus, it is obtained that the JYJLL method is better in 

estimating the parameter for the ExEW distribution compared to the LFZ method. Based on Figure 5 and Figure 

6, it is obtained that the JYJLL method is more stable than the LFZ method.   

 For parameter  , the JYJLL method has a lower RMSE value compared to the LFZ method for all sample sizes  . 

Based on Table 3 and Table 4, the average RMSE for all sample sizes   can be seen. The average RMSE for the 

JYJLL method is 0.6948 (set 1) and 0.6446 (set 2) and the average RMSE for the LFZ method is 1.8338 (set 1) 

and 1.3452 (set 2). Thus, it is obtained that the JYJLL method is better at estimating the   parameter for the 

ExEW distribution compared to the LFZ method. Based on Figure 5 and Figure 6, it is obtained that the LFZ 

method is unstable, meanwhile, the JYJLL method is more stable for all sample sizes  .  

 For parameter  , the JYJLL method has a lower RMSE value compared to the LFZ method for all sample sizes  . 

Based on Table 3 and Table 4, the average RMSE for all sample sizes   can be seen. The average RMSE for the 

JYJLL method is 0.4321 (set 1) and 0.4576 (set 2) and the average RMSE for the LFZ method is 0.9028 (set 1) 

and 0.8908 (set 2). Thus, it is obtained that the JYJLL method is better at estimating parameter   for the ExEW 

distribution compared to the LFZ method. Based on Figure 5 and Figure 6, it is obtained that both methods 

experience a decrease along with the increasing number of samples  , with the RMSE value of the JYJLL method 

being smaller than the LFZ method. This shows that the estimation of parameter   is increasingly accurate with 

increasing sample size.  

 For parameter  , the JYJLL method has a higher RMSE value compared to the LFZ method for sample sizes   = 

25 and 100 (set 1) as well as for   = 75, 100, 150, 200 and 300 (set 2). Based on Table 3 and Table 4, the average 

RMSE for all sample sizes   can be seen. The average RMSE for the JYJLL method is 0.2269 (set 1) and 0.2200 

(set 2) and the average RMSE for the LFZ method is 0.3212 (set 1) and 0.2074 (set 2). Thus, it is obtained that the 

JYJLL method is slightly worse in estimating the   parameter for the ExEW distribution compared to the LFZ 

method in set 2. However, based on Figure 5 and Figure 6, it is obtained that the JYJLL method remains more 

stable than the LFZ method. 

Overall, the JYJLL spectral gradient conjugate method shows better and more consistent performance in estimating 

parameters  ,  , and  . The LFZ method tends to have higher and unstable RMSE values for all parameters, except 

for parameter  . However, this indicates that the JYJLL method can be more reliable in estimating ExEW distribution 

parameters.   It can be obtained that the results of both simulations show that the JYJLL spectral gradient conjugate 

method is better than the LFZ spectral gradient conjugate method in estimating the ExEW distribution parameters. In 

the next part, the JYJLL method is used to estimate the parameter values from real data.  

4.2. Application in Airplane Windshield Failure Rate Data 

Previously, a parameter estimation simulation of the ExEW distribution was carried out using the JYJLL method. 

Obtained from the analysis carried out, the JYJLL method provides better estimation results compared to the LFZ 

method. Therefore, the application of the ExEW model to real data uses the JYJLL method.  In this section, the 

ExEW distribution is applied to simulation data that represents the airplane windshield failure rate. Failure rate is a 

measure used to describe the frequency of failure of an engineered system or component. Usually defined as the 

number of failures per unit time. Data obtained from the journal "The Extended Exponential Weibull Distribution: 

Properties, Inference, and Applications to Real-Life Data", 2022, which consists of 84 data. 

Table 5: 84 Airplane Windshield Failure Rate Data (Thousands of Hours) 

No Data  No Data No Data No Data No Data No Data No Data No Data 

1 0.04 12 1.866 23 2.385 34 3.443 45 0.301 55 1.876 65 2.481 75 3.467 

2 0.309 13 1.899 24 2.61 35 3.478 46 0.557 56 1.911 66 2.625 76 3.578 

3 0.943 14 1.912 25 2.632 36 3.595 47 1.07 57 1.914 67 2.646 77 3.699 

4 1.124 15 1.981 26 2.661 37 3.779 48 1.248 58 2.01 68 2.688 78 3.924 

5 1.281 16 2.038 27 2.823 38 4.035 49 1.281 59 2.085 69 2.89 79 4.121 

6 1.303 17 2.089 28 2.902 39 4.167 50 1.432 60 2.097 70 2.934 80 4.24 

7 1.48 18 2.135 29 2.962 40 4.255 51 1.505 61 2.154 71 2.964 81 4.278 

8 1.506 19 2.19 30 3.0 41 4.305 52 1.568 62 2.194 72 3.103 82 4.376 

9 1.615 20 2.223 31 3.114 42 4.449 53 1.619 63 2.224 73 3.117 83 4.485 

10 1.652 21 2.229 32 3.166 43 4.57 54 1.652 64 2.3 74 3.344 84 4.602 
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11 1.757 22 2.324 33 3.376 44 4.663         

 
The following provides descriptive statistics of the failure rate data in Table 5. 

 

 

 

Table 6: Descriptive Statistics of Failure Rate Data 

Descriptive 

Statistics 
Value 

Mean 2.55745 

Median 2.3545 

Modus 2.25 

Variance 1.25177 

Skewness 0.09949 

Kurtosis -0.65232 

Min 0.04 

Max 4.663 

From Table 6, the difference between the median and mean values shows that the data distribution approaches a 

symmetrical shape. In addition, the skewness coefficient of 0.09949 indicates that the data tends to skew to the right.  

Kurtosis with a value of -0.65232 describes a flatter distribution curve shape compared to the normal distribution. 

Therefore, the data is suitable for modeling with the ExEW distribution.  In addition, the data is also modeled with 

several other distributions, namely the Weibull distribution and the exponential distribution.  The parameter 

estimation of these distributions is carried out using the MLE method with the help of the JYJLL spectral gradient 

conjugate method in RStudio software.  The results of the ExEW, Weibull, and exponential distribution parameter 

estimates can be seen in Table 7 below. 

Table 7: Parameter Estimator for Distributions Modeling Airplane Windshield Failure Rate Data 

Model Distribution Estimator Estimation Results 

Extended 

exponential Weibull 

(ExEW) 

 ̂ 0.7911 

 ̂ 0.5580 

 ̂ 2.9316 

 ̂ 0.0645 

Weibull  ̂ 0.0823 

 ̂ 2.3744 

Exponential  ̂ 0.3910 

After obtaining parameter estimates from the ExEW, Weibull, and exponential distributions. Next, a model fit test 

is carried out on the data using the Kolmogorov-Smirnov test.  In this case, the ExEW and Weibull distributions 

proven to be good in modeling airplane windshield failure rate data based on the Kolmogorov-Smirnov goodness-of-

fit test.  It has been found that the ExEW and Weibull distributions are suitable for modeling airplane windshield 

failure rate data. Therefore, it is necessary to select the best model. The first step taken in this study is to see the 

comparison of the PDF graphs of the ExEW and Weibull distribution models against the histogram of airplane 

windshield failure rate data. For the comparison of the PDF graph and data histogram, it can be seen in Figure 7 that 

the ExEW and Weibull distributions have almost the same graphs. It can also be seen from the shape of the data 

histogram, that the ExEW PDF graph is better at modeling airplane windshield failure rate data compared to the 

Weibull distribution. Then, seen from the comparison of the CDF graphs in Figure 7, the CDF that most closely 

matches the empirical CDF shape is the ExEW CDF. Therefore, with the graphical approach step, it can be obtained 

that the ExEW distribution is better at modeling airplane windshield failure rate data.  
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Figure 7: RMSE Comparison of PDF (left) and CDF (right) Plots of ExEW and Weibull Distributions with 

Histogram of Data 
 

Next, the best model is selected by looking at the information criteria, namely AIC and BIC.  The smaller the AIC and 

BIC values, the better the model is at modeling the data.  Here are the AIC and BIC values for competing 

distributions:  

Table 8: AIC and BIC Values for Each Distribution 

Distribution Model AIC BIC 

ExEW 261.3098 261.0069 

Weibull 264.1066 263.9552 

Based on Table 8 it is obtained that the ExEW distribution has the best AIC and BIC values, which are 261.3098 and 

261.0069. Therefore, the ExEW distribution is better at modeling airplane windshield failure rate data compared to 

the Weibull distribution and the exponential distribution. 

5. Conclussion 

Based on the research conducted, the following conclusions can be drawn: 

a. The Jian-Yang-Jiang-Liu-Liu (JYJLL) spectral conjugate gradient method has proven to be effective in assisting 

the Maximum Likelihood Estimation (MLE) process for estimating the parameters of the Extended Exponential 

Weibull (ExEW) distribution. In data simulation studies, this method demonstrated strong performance, as 

indicated by low Root Mean Square Error (RMSE) values, even as the sample size increased. 

b. A comparative analysis of the JYJLL and Liu-Feng-Zou (LFZ) spectral conjugate gradient methods in simulation 

scenarios shows that the JYJLL method outperforms the LFZ method in parameter estimation. This is evidenced 

by the lower and more stable RMSE values obtained using the JYJLL method compared to the LFZ method. 

c. The distributional goodness-of-fit tests indicate that the ExEW distribution is the most suitable model for the 

given dataset compared to the competing distributions. This conclusion is supported by a Kolmogorov–Smirnov 

(K-S) test statistic below the critical value and the lowest AIC and BIC values among all candidate distributions. 
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