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Abstract  

Regression analysis is the most popular and commonly used to determine causality between two or more variables. In regression 

analysis there are several assumptions that must be held, so that the property of the best linear unbiased estimator (BLUE) is still 

guaranteed. In fact, we often found violations of the assumptions.  One of them was violations of the homoscedasticity or occurs 

heteroscedasticity. The impact of heteroscedasticity in the regression model is that the ordinary least square (OLS) estimator no 

longer has a minimum variance although still linear and unbiased. To handle this, weighted least square (WLS) regression is used 

instead, which giving weights on the observations. But the problem often encountered is choosing which the best weight in WLS 

method. This paper aimed to compare and determine the best weight among 1/X, 1/√ , 1/Y and 1/ in multiple regression model. 

Human development index factors data, which were obtained from the Indonesian Central Bureau of Statistics, were used. The 

results showed that the best weight on human development index data was 1/ The coefficient of determination was 98.7% 

indicating that the model was very good. 
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1. Introduction  

Regression analysis is most popular and commonly used to determine causality between two or more variables. 

There are several assumptions in regression analysis that must be considered, namely normally distributed of error, no 

multicollinearity, and homogeneity of variance which is called homoscedasticity. All these assumptions must be met 

so that the estimated parameters in the regression analysis meet the BLUE (Best Linear Unbiased Estimator) property 

(Montgomery, 2001). 

When there is violation of the assumption of homoscedasticity or occurs heteroscedasticity, it means that the error 

is not constant. The impact of heteroscedasticity in the regression model is that the ordinary least square (OLS) 

estimator no longer has a minimum variance although is still linear and unbiased. It also causes the calculation of the 

standard error/standard error of the OLS method to be unreliable. In addition, hypothesis testing based on the t and F 

distributions can no longer be trusted for evaluating regression results (Nisa et al, 2020). The Weighted Least Square 

(WLS) method is an alternative method that can be used to overcome the problem of heteroscedasticity. 

Research on overcoming the violation of the homoscedasticity assumption has been done before by several 

researchers. The research carried out by Setiyoko (2018) stated that for panel data regression that is heteroscedastic, 

the weighted least square method can be used as an alternative solution. Another study by Rustam & Aisyah (2022) 

stated that factors of health, education, and standard of living were very influential in assessing the Human 

Development Index. 

This study aims to analyze the symptom of heteroscedasticity in multiple linear regression models using the 

weighted least square method. The data used is data on factors that affect the human development index in 34 

provinces in Indonesia in 2021.  

2. Literature Review  

2.1 Multiple Regression Analysis 
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Linear regression analysis is an analysis that used to investigate the causal relationship between two or more 

variables (Riyanto &Wikarya, 2018). Regression analysis was first named by San Francis Galton (a geneticist) in 

1885 in his studies to investigate the relationship between a child's height and his father's height. Furthermore, this 

regression analysis is widely used to analyze variable relationships in the natural sciences, such as the study of the 

average oxygen consumption of each person with variables that influence it, namely age, body weight, average resting 

heart rate, the average heart rate immediately after a person runs and the running time for a certain distance. 

In further developments, social sciences began to use regression analysis to analyze the relationship between socio-

economic variables and business. For example, analyzing the effect of advertising spending on sales, analyzing the 

effect of income on consumption, and many more.  

Regression analysis is concerned with the study of the dependence of one variable, namely the dependent variable, 

to one or more independent variables. If there is only one dependent variable and one independent variable it is called 

simple regression analysis, whereas if there are several independent variables it is called multiple regression analysis. 

In general, a multiple linear regression model with the dependent variable Y and the independent variable  1,  2, … , 

 𝑖 can be written as follows: 

       𝑌 = 𝛽0 +  𝑖𝛽1 +  2𝛽2+. . . + 𝑝𝛽𝑝 + 𝜀𝑖        (1) 

where: 

𝑌 : dependent variable 
 1,  2, … ,  𝑝 : independent variable  
𝛽0, 𝛽1, 𝛽2, … , 𝛽𝑝 : regression parameters/coefficients 

𝜀 : error  

The above equation can also be written simply as matrix notation as follows : 

  𝒀 = 𝑿  +        

where 
𝑌 : observation vector of dependent variable with size 𝑛 × 1 

  : independent variable with size 𝑛 × (𝑝 + 1) 

𝛽 : coefficient vector of independent variables with size (𝑝 + 1) × 1 

𝜀 : error vector of size 𝑛 × 1 
The assumptions of classical linear regression according to Stang (2017), are as follows: 

1. The average value of the error is zero, 𝐸(𝜀) = 0. 

2. The error range is the same, namely a constant value of 𝜎2. 

3. The error is normally distributed, 𝜀 ∼ 𝑁(0, 𝜎2). 

4. There is no autocorrelation between errors so the covariance is zero, 𝑐𝑜𝑣(𝜀𝑖 , 𝜀𝑗) = 0, 𝑖 ≠ 𝑗. 
5. There is no correlation between the independent variables   or there is no multicollinearity between the 

independent variables  . 

2.2.  Ordinary Least Square 

The Ordinary Least Square (OLS) method is a method used to estimate classical regression coefficients by 

minimizing sum of squared errors (Sum of Square of Error/SSE) or ∑𝜀2
 (Maziyya et al., 2015). If the SSE is small, 

then the error for the data as a whole will also be small and this means that the regression line that has been created is 

the regression line that is closest to the pair of observations. The Ordinary Least Square (OLS) method was 

discovered by a mathematician from Germany named Carl Friedrich Gaus, where multiple linear regression analysis 

was used to see the influence of indicators on collectability both individually and together. 

The estimator in the OLS method is obtained by minimizing the sum of the squared errors, as in the following 

equation 

  𝜀   =  𝒀  − 𝑿         (3) 
the sum of the squares of the errors becomes : 

    𝜀𝑇𝜀𝑖 = (𝒀 − 𝑿)𝑇(𝒀 − 𝑿) 

= (𝒀𝑻 − 𝑻𝑿𝑻)(𝒀 − 𝑿) 
             = 𝒀𝑻𝒀 − 𝒀𝑻𝑿 − 𝑻𝑿𝑻𝒀 + 𝑻𝑿𝑻𝑿                      (4) 
To minimize the sum of squared errors (𝑆𝑆𝐸) then 𝜀𝑇𝜀𝑖 in equation (4) is differentiated with respect to 𝛽 so that we 

obtain the equation 

−𝟐𝑿𝑻𝒀 + 𝟐𝑿𝑻𝑿 = 𝟎 

                       𝟐𝑿𝑻𝑿 = 𝟐𝑿𝑻𝒀  

                            𝑿𝑻𝑿 = 𝑿𝑻𝒀                        (5) 
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Both sides of equation (5) are multiplied by (𝑿𝑻𝑿)

−𝟏 to become 

   (𝑿𝑻𝑿)−𝟏(𝑿𝑻𝑿) = (𝑿𝑻𝑿)−𝟏𝑿𝑻𝒀 
   (𝑿𝑻𝑿)−𝟏𝑿𝑻𝒀       (6) 
 

The OLS estimator contains ideal or optimum properties described in the Gauss-Markov theory (Gujarati & 

Porter, 2013). This theory considers the properties of BLUE (Best Linear Unbiased Estimator) or the best linear 

unbiased estimator. These characteristics include: 

1. Linear, which is a linear function of a random variable, such as the dependent variable Y in a regression model. 

2. Unbiased, where the average value or expected value is the same as the actual value. 

3. Has minimum variance from all groups of linear and unbiased estimates; An unbiased estimator with the smallest 

variance is known as an efficient estimator. 
 

 

2.3.  Weighted Least Square 

 

The Weighted Least Square (WLS) method is a form of development of OLS which is used to overcome 

heteroscedasticity problems (Nisa et al., 2020). One of the classic assumptions that must be met in OLS estimation so 

that the estimation results are reliable, namely the homogeneous residual variance 𝐸(𝜀2
) = 𝜎2

 (homoscedasticity). 

Montgomery (2001) said that overcoming the heteroscedasticity problem in the regression model can be done using 

the method Weighted Least Squares (WLS). In this method, weighting is used which is proportional to the inverse of 

the various response variables so that an error is obtained according to the nature of the regression with ordinary least 

squares. 

The WLS method is in principle the same as the least squares method, the difference is that in the WLS method 

there is the addition of a new variable, namely W as a weight. Parameter estimates 𝛽0, 𝛽1, 𝛽2, … , 𝛽𝑝 for multiple 

linear regression using the WLS method are as follows: 

  = (𝑿𝑻𝑾𝑿)
−𝟏𝑿𝑻𝑾𝒀        (7) 

Determining the weighting can be done by looking at the pattern shown by the residuals of the independent 

variables (Gujarati & Porter, 2013).  These patterns include  

a) The variance error is proportional to   
  

𝐸(𝜀2) = 𝜎2   
                            (8) 

If the heteroscedasticity test uses the graphical or Glejser method, it is believed that the error variance is 

proportional to the square value of the variable  𝑖 as in Figure 1 below. 

     Figure 1 : Variance error is proportional to   
  

If the pattern shows a quadratic relationship as in Figure 1, then it can be assumed that the error variance is 

proportional to  2
, the weight used in the WLS method is 1/ 𝑖 so the regression equation will become : 

    
 

  
  

                

  
          (9) 

b) The variance error  is proportional to  𝑖 

𝐸(𝜀2) = 𝜎2  𝑖 

If the heteroscedasticity test uses the graphic or Glejser method, it is believed that the error variance is 

proportional to the variable  𝑖 as in Figure 2 below. 
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Figure 2 : Variance error is proportional to  𝑖 

 

If the pattern shows a relationship like in Figure 2 then it can be assumed that the error variance is proportional to 

 𝑖 so that the weighting used in the WLS method is 
 

√  
  so the equation will become :  

          
 

√  
 

                

√  
                (10) 

c) The variance of the error is proportional to the mean square value 

𝐸(𝜀2) = 𝜎2 [𝐸(𝑌)]2                          (11) 
If the error variance is proportional to [𝐸(𝑌)]2, as illustrated in Figure 3 below : 

 

 

 

 

 

 

 

 

 

                          
Figure 3. : Variance error is proportional to mean square value 

If the error variance is proportional to [𝐸(𝑌)]2 then the WLS method is carried out by OLS regression by ignoring 

heteroscedasticity to get the value of 𝑌  (Y predicted) which will be used as a weight, so that the regression 

equation becomes : 

               
 

 ̌
 

                

 ̌
              (12) 

d) If it is assumed that 𝜎2
 is known or can be estimated then that will be used as a weighting is 

 

   (squared residual) 

so that 𝜎 the regression equation becomes: 

   
 

 
 

                

 
               (13) 

3. Materials and Methods  

3.1. Materials  

The data used in this study is secondary data obtained from the official website of the Indonesian Central Bureau 

of Statistics (BPS), namely https://bps.go.id. The variables used in this study were variables which affect the human 

development index in 34 provinces in Indonesia. The list of variables can be seen in Table 1. 

 

 

 

 

 

 

Table 1 : List of Research Variables 

https://bps.go.id/
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No. Variables Name of Variables 

1. Y Score of Human Development Index 

2.  1      Life expectancy index (year) 

3.  2      Expected length of school (year) 

4.  3      Average length of school (year) 

5.  4 Expenditure for food and non-food (IDR/capita/month) 

3.2. Methods 

Method of analysis is carried out as follow 
1. Create the initial equation for the multiple linear regression model according to the variables used in the research. 

The model analyzed ini this paper was multiple regression model as can be seen in equation (1).   

𝑌i = 𝛽0 +  11𝛽1 +  12𝛽2 +  13𝛽3 +  14𝛽4 + 𝜀i                 (14) 

where: 
𝑌1    :  Score of Human Development Index 

 1    :  Life expectancy index (year) 

 2    :  Expected length of school (year) 

 3    : Average length of school (year)  

 4    :  Expenditure for food and non-food (IDR/capita/month) 

𝛽i    :   regression coefficient 

𝜀1    :   error term 

2. Estimating parameters using the OLS method as shown on equation (6). 

3. Classical assumption test is carried out consisting of the normality test, multicollinearity test and 

homoscedasticity test.  

4. If homoscedasticity assumption was violated, then heteroscedasticity occurs, WLS regression can be used 

instead (Fransiska et al., 2022), which giving weights W.  The weight that will be tested are 
 

 
 
 

√ 
 
 

 ̌
 
 

 
.   

5. Estimating parameters using the WLS method as shown on equation (7). 

6. Test the classical assumptions again on the model that has been improved using the WLS method 

7. Testing parameter significance. 

8. The best weight will be chosen according to signification test of the model, assumptions test and 

coefficient of determination (Xu, 2019).  

9. Interpreting the final model.    

4. Results and Discussion 

The first step in data analysis is to form a multiple linear regression as equation (1) using the OLS method and 
assumptions test. Table 2 shows that all coefficients were significant at 5% level.  All VIF were under 10, indicating 
no multicollinearity among the independent variables. 

Table 2 : Estimated Parameter and Significance Test of The Model Using Ordinary Least Square 
Unstandardized 

Coefficients 

Standardized 

Coefficients 

 

 

 

 

 

t 

 

 

 

 

 

Sig. 

Collinearity 

Statistics 

 

 

Model 

 

 

 



  Std. 

Error 

 

 

Beta 

 

 

Tolerance 

 

 

VIF 

1 (Constant) -16.344 7.199  -2.270 .031   

X1 .767 .104 .491 7.396 .000 .773 1.293 

X2 1.336 .392 .251 3.406 .002 .627 1.595 

X3 1.397 .371 .329 3.767 .001 .445 2.245 

X4 3.197E-6 .000 .235 2.966 .006 .542 1.845 
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Figure 4 shows that the error was normally distributed as the Jarque-Bera was 2.49 with probability more than 

0.05. 
 

 

Figure 4 : Result of normality test Using Ordinary Least Square 

The homoscedasticity test is performed using Glejser test. Table 3 shows that heteroscedasticity occurred in 
variable X4 so WLS methods will be used. 

Table 3 : Result of homoscedasticity test Using Ordinary Least Square 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

 

 

t 

 

 

Sig. 

Model  Std. Error Beta 

 (Constant) 7.623 3.494  2.182 .037 

X1 -.082 .050 -.291 -1.621 .116 

X2 .002 .190 .002 .010 .992 

X3 -.303 .180 -.399 -1.686 .102 

X4 1.330E-6 .000 .545 2.543 .017 

 
Weighted Least Square Model 
Based on the Glejser test result, the data contains heteroscedasticity problems in variable X4. Therefore, appropriate 

weighting will be used to handle the heteroscedasticity problem. Results of estimation using 
 

 
, 

 

√ 
, 
 

 
, and  

 

 
 weights 

are presented at Table 4.   

Table 4 : Estimated Parameters and Significance Test of the Model Using Weighted Least Square Methods  

with 
 

 
, 

 

√ 
,
 

 
   and  

 

 
 Weights 

Variables  

 
 

 

√ 
 

 

𝑌
 

 

𝜎
 

C -16.344 

(7.064) 

-16.413 

(7.127) 

-17.354 

(7.283) 

-10.027 

(2.649) 

X1 0.776** 

(0.099) 

0.772** 

(0.101) 

0.776** 

(0.104) 

0.718** 

(0.037) 

X2 1.344** 

(0.388) 

1.342** 

(0.390) 

1.356** 

(0.400) 

1.257** 

(0.088) 

X3 1.321** 

(0.360) 

1.357** 

(0.365) 

1.420** 

(0.374) 

1.042** 

(0.123) 

X4 3.091E-6** 

(0.000) 
3.143E-6** 

(0.000) 
3.058E-6** 

(0.000) 

4.58E-6** 

(0.000) 

R
2
 0.880 0.883 0.90 0.987 

         Note : **significance at  = 5%  
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Table 4 shows that for the weight 
 

 
, all independent variables were significant at 5% level, all assumption were 

fulfilled but still there was heteroscedasticity on X1 and X4, while coefficient determination was 88%.  

For the weight 
 

√ 
  all independent variables were also significant at 5% level, all assumption were fulfilled but still 

there was heterosceasticity on X4, while coefficient determination was 88.3%.  

For the weight 
 

 
 all independent variables were also significant at 5% level, all assumption were fulfilled but still 

there was heteroscedasticity on X4, while coefficient determination was increased to 90%.  

For weight 1/ all independent variables were also significant at 5% level, all assumption were fulfilled, no more 

heteroscedasticity, while coefficient determination was the highest 98.7%. 

According to those results, it can be said that the best weight for regression model tested was 1/ with all 

assumptions were fulfilled.  The regression model using the best weight was as follows: 

𝑌 = -10.027 + 0.718X1 + 1.257X2 + 1.042X3 + 4.58E-6X4                                       (15) 

where Y is the human development index, X1 is life expectancy, X2 is the expected length of schooling, X3 is the 

average length of schooling, and X4 is the monthly expenditure per capita per month for food and non-food. 

The model is very good because it produces coefficient determination value of 98.7%, which means that the 

variability in the coefficient of the human development index is significantly influenced by life expectancy, the 

expected length of schooling, the average length of schooling, and expenditure per capita per month for food and non-

food. The plot of prediction and residual is presented at Figure 5.  

 
Figure 5  : Plot of prediction and residual 

 
Figure 5 shows that the plot of prediction and residual has no pattern, it strengthens that the model estimated using 

weighted least square was fit to the data.  
 

5. Conclussion 

According to those results, it can be said that the best wight for regression model tested was 1/ with all 

assumptions were fulfilled. The model estimated using weighted least square is very good because it produces 

coefficient determination value of 98.7%, which means that the variability in the coefficient of the human 

development index is significantly influenced by life expectancy, the expected length of schooling, the average 

length of schooling, and expenditure per capita per month for food and non-food.  
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