

Available online at https://ejournal.corespub.com/index.php/ijmsc/index

International Journal of Mathematics, Statistics,

and Computing

Vol. 2, No. 2, pp. 68-75, 2024

e-ISSN 3025-0803

Analysis Testing Black Box and White Box on Application To-Do List

Based Web

Dede Irman Pirdaus
1*

, Rizki Apriva Hidayana
2

1
Faculty of computer science, University of Informatics and business, Bandung, Indonesia

2
Department of Mathematics, Faculty of Mathematics and Natural Sciences, National University of the Republic of Indonesia,

Bandung, Indonesia

*Corresponding author email: dedeirmanpirdaus@gmail.com

Abstract

The rapid development of information technology has led to the creation of numerous web-based applications designed to assist

human activities and work. One such application is the To-Do List, which helps users manage their tasks and increase

productivity. This study aims to analyze the quality of web-based To-Do List applications through black box and white box

testing. The research focuses on the login and main pages of the application, where various scenarios are tested to ensure that the

system functions as intended. The testing process includes designing test scenarios, creating test cases, executing the test cases,

and collecting and processing test result data. The study also includes an analysis of the program's source code using flowcharts

and flowgraphs to identify the number of independent logic execution paths and design test cases for white box testing. The

results of the testing will help identify errors and weaknesses in the application, ensuring that the final product is of high quality.

Keywords: To-Do List Application, Web-based Application, Black Box Testing, White Box Testing.

1. Introduction

The development of information technology is currently growing very rapidly. This is characterized by the large
number of web-based applications developed to assist human activities and work. One application that is currently
being developed is a to-do list application or a list of activities that must be done. This application really helps users to
manage their activities so that users can be more organized. To-do list apps are software designed to help users
organize and track their daily tasks more efficiently (Kumar et al., 2015; Syaikhuddin et al., 2018). Using this
application, users can create a list of tasks that need to be completed, set priorities, and set deadlines.

To-do list apps generally offer intuitive and easy-to-use interfaces, allowing users to quickly add, edit, or delete
tasks. Some common features in these apps include reminders, categories or projects to group tasks, as well as
integration with calendars or other apps. The diversity of to-do list apps allows users to choose the one that best suits
their needs and preferences, whether that's through ease of access across multiple devices or integration with the rest
of the software ecosystem. To-do list applications help increase productivity and help users stay organized in carrying
out daily activities (Kato et al., 2014; Merrigan et al., 2021).

In developing a web-based application, testing is a very important part. Testing is carried out to ensure that the
application being built runs well and meets user needs. Software testing has a number of advantages and
disadvantages that developers and organizations need to consider. One of the main advantages of software testing is its
ability to identify and fix potential bugs or errors in an application's source code (Hussain and Singh 2015; Arcuri,
2020; Golіan et al., 2022). A good testing process can also improve software security and reliability, and ensure that
applications function according to user needs and expectations.

Testing can help reduce the risk of failure and ensure software quality throughout its development life cycle.
However, software testing also has its drawbacks. The testing process can take significant time and expense,
especially if carried out thoroughly and continuously. Sometimes, security and reliability aspects of software may be
overlooked if testing is not done carefully. Additionally, testing cannot guarantee that the software is completely free
of all errors or bugs. Especially in complex software projects, there may be some unexpected conditions or usage
scenarios that are difficult to identify during testing. There are various kinds of software testing techniques, one of
which is black box and white box testing (Krishna Mohan et al., 2010; Praniffa et al., 2023).

 Pirdaus et al. / International Journal of Global Operations Research, Vol. 2, No. 2, pp. 68-75, 2024 69

Black box and white box testing are two important methods in evaluating and improving software quality. Black
box testing involves checking the functionality of software without paying attention to the internal structure of the
source code (Qian, 2018). In this testing, the main focus is on the input and resulting output, as well as how the
software responds to various conditions. This approach is similar to the external user perspective in that it only pays
attention to what can be seen from outside the system. On the other hand, white box testing includes an internal
examination of the structure and logic of the software source code. Testers access and analyze source code to ensure
that each part of the program functions as intended. White box testing requires a deep understanding of software
design and implementation, thus requiring higher technical expertise.

The advantage of black box testing lies in its ability to evaluate applications from the user's perspective, find bugs
or functional errors, and identify application performance in various scenarios. Meanwhile, white box testing provides
deep insight into the internal structure of the software, allowing testers to identify and fix errors at the code level. Both
play an important role in ensuring software security, reliability and optimal performance. Using a combination of
black box and white box testing often results in a holistic testing approach, helping to minimize errors and improve the
overall quality of the software. In successful software development, black box and white box testing are not simply
considered as separate stages, but rather as integral elements of the overall software development life cycle (Gustinov
et al., 2023).

These two types of testing are very important to carry out in order to find errors and deficiencies in the application
so that the quality of the application can be guaranteed. In this research, black box and white box testing analysis will
be carried out on web-based to-do list applications. It is hoped that the results of this testing can help find errors and
weaknesses in the application so that the quality of the application can continue to be improved.

2. Methodology

The first step, Designing test scenarios, involves describing the test scenarios to be carried out. These scenarios are
usually written from the user's perspective and include the functionality to be checked. This scenario will then be
divided into several test cases. The second step, Designing test cases, involves creating the steps that the tester will
follow to test each scenario. These test cases usually include input, procedures, and expected results.

The third step, Test case testing, involves testing each test case that has been created. The tester will execute the
specified steps and compare the results with those expected. The fourth step, Test results, involves collecting and
processing test result data. This data will be used to determine the success or failure of the software and to identify
deficiencies or bugs. For more details, see Figure 1.

Figure 1: Steps in this Research

In this research stream, it is important to ensure that each step is carried out in a thorough and organized manner.
This will help reduce the risk of software failure and improve the quality of the final result. Apart from that, this
research flow can be used as a reference in conducting software testing, starting from test scenarios, test case design,
testing itself, to test results.

 Pirdaus et al. / International Journal of Global Operations Research, Vol. 2, No. 2, pp. 68-75, 2024 70

3. Results and discussion

3.1. Black box testing

3.1.1. Program input design

Figure 2: Login page user interface

The test results on the login page will be explained in table 1 as follows:

Table 1: Testing page login
No. Scenario Testing Results Testing The results expected Information

1. Username and
Passwords Correct

appear message
”Welcome,

Name user!”

Entered into page main "Welcome, Name
user!”

Valid

2. Username and
Password not in
fill Then click

Login

Appear message
” Username and

Password are
required"

The system doesn't Can direct to the yard
furthermore And

notification " Username and Password are
required”

Valid

3. If only just the
username in fill

Then click Login

Notification ”
Username is

required”

The system doesn't Can direct to the yard
furthermore And notification " Username is

required”

Valid

4. If only just the
password in fill

Then click Login

Appear message
”Password is

required"

The system doesn't Can direct to the yard
furthermore And appear message ”

Password is required"

Valid

5. If username or
Wrong Then click

login

Appear message
” Incorect

Username or
password”

The system doesn't Can direct to the yard
furthermore And notification " ” Incorect

Username or

password"

Valid

The following is an explanation of the black box test results on the login page:
1. The test scenario of entering the correct username and password produces the message "Welcome, User

Name!" as expected. Valid testing.
2. The test scenario of not entering the username and password and then pressing the login button displays the

message "Username and Password are required" as expected. Valid testing.
3. The test scenario of simply entering the username then pressing login displays the message "Username is

required" as expected. Valid testing.
4. The test scenario of simply entering the password then pressing login displays the message "Password is

required" as expected. Valid testing.
5. The test scenario of entering the wrong username or password then pressing login displays the message

"Incorrect Username or Password" as expected. Valid testing.

Figure 3: Main page user interface

 Pirdaus et al. / International Journal of Global Operations Research, Vol. 2, No. 2, pp. 68-75, 2024 71

The test results on the main page will be explained in table 2 as follows:

Table 2: Test results
No. Scenario Testing Results Testing The results expected Information

1. When column add
tasks are not filled in

And click Add

Notification ” Column
no can blank"

Can not fill in the data
and Appear message ”

Column No can

blank"

Valid

2. When column tasks in
fill with, for example
sports And click Add

Input data go to tasks
label

Input data go to tasks
labels and databases

todolist

Valid

3. When click checkbox
on tasks label

Checkboxes become
ter- uncheck And

Checkboxes become ter-
uncheck And

Valid

 Tasks status become
'close'

Task status become
'close' on databases

4. When you click the
button edit on tasks

label

Directed to edit page
and input fields

editable by user in
accordance need

User directed back to
main page with that

change applied

Valid

5. When you click the
button delete on task

label

Notification ” Are you
sure to delete this

data!"

Data tasks label succeed
erased on

databases

Valid

6. When click log out Notification ” Are you
sure you want to logs

out?”

If select yes Directed
back to login page, If

choose cancel will
remain is at on page

main

Valid

The following is an explanation of the black box test results on the main page:
1. Test scenarios where the add task column is empty and then click add displays the notification "Column

cannot be empty" as expected. Valid testing.
2. Test scenario by filling in the task column then clicking add, the data is successfully entered into the task

label and database. Valid testing.
3. Test scenario by clicking the checkbox on the task label, the checkbox status and the task status in the

database change as expected. Valid testing.
4. Test scenario by clicking the edit button on the task label, the edit page opens and the user can change the

data. After returning to the main page, the changes take effect. Valid testing.
5. Test scenario by clicking the delete button on the task label, a deletion confirmation appears. If selected

yes, the task data is deleted from the database. Valid testing.
6. Test scenario by clicking logout, confirmation appears. If yes, return to the login page. Otherwise, stay on

the main page. Valid testing.

3.2. White Box Testing

3.2.1. Code program web to-do-list

<?php
session_start();
include "database.php";
if (isset($_POST['uname']) && isset($_POST['password'])) {
function validate($data){
}
$data = trim($data);
$data stripslashes($data);
$data = htmlspecialchars($data); return $data;
$uname = validate($_POST['uname']); $pass = validate($_POST['password']);
if (empty($uname) && empty($pass)) {
header("Location: login.php?error=Username and Password are required"); exit();
}else if(empty($uname)) {
header("Location: login.php?error-Username is required"); exit();

 Pirdaus et al. / International Journal of Global Operations Research, Vol. 2, No. 2, pp. 68-75, 2024 72

}else if(empty($pass)){
header("Location: login.php?error-Password is required"); exit();
}else{
$sql = "SELECT * FROM users WHERE username='$uname' AND password='$pass'";
$result = mysqli_query($conn, $sql);
if (mysqli_num_rows($result) = 1) {
$row = mysqli_fetch_assoc($result);
if ($row['username'] $uname 66 $row['password'] = $pass) {
$_SESSION['username'] = $row['username'];
$_SESSION['name'] = $row['name']; $_SESSION['id'] = $row['id'];
echo "<script> alert('Welcome,
$_SESSION['name'] . "!');
window.location.href="index.php';</script>";
exit();
}else{
}else{
header("Location: login.php?error-Incorect User name or password"); exit();
header("Location: login.php?error-Incorect Username or password"); exit();
}else{
header("Location: login.php");

exit();

(1)

3.2.2. Flowchart web to-do-list

Flowcharts aim to facilitate understanding of the overall application workflow, especially in conducting white box
testing. Flowcharts are useful for analyzing the cyclomatic complexity of program code.

Figure 4: Flowchart

 Pirdaus et al. / International Journal of Global Operations Research, Vol. 2, No. 2, pp. 68-75, 2024 73

3.2.3. Flow graph web to-do-list

Flowgraph aims to analyze and model all possible logic paths of a program/source code. The following web to-do-
list flowgraph can be seen in Figure 5.

Figure 5: The Flowgraph

From the flowgraph results above, it consists of 11 nodes which represent the number of statements in the program,
14 edges which show the control flow between statements, 5 regions which are independent paths of the program, and
4 predicate nodes as decision nodes. From the flowgraph it can be seen that the program has 5 independent logic
execution paths. The basic path of the program is shown by region 1 (R1) with a node sequence of 1-2-3-1. Then there
are 4 control branches, namely R2 1-2-4-5-1, R3 1-2-4-6-7-1, R4 1-2-4-6-8-9-1, and R5 1-2 -4-6-8-9-10-11. R5 is the
most complex path with more nodes.

V(g) = E – N + 2 V(G)= P+1 V(G) = R

V(G) = 14 – 11 + 2 V(G)= 4 + 1 V(G) = 5

V = 5 V(G) = 5

(2)

It can be concluded that the program in this example has 5 cyclomatic complexities. This means that there are 5
independent paths that must be tested in the program to achieve optimal white box testing coverage. It can be
concluded that the base path is:

Path 2 = 1-2-4-5-1

Path 3 = 1-2-4-6-7-1

Path 4 = 1-2-4-6-8-9-1

Path 5 = 1-2-4-6-8-9-10-11

Predicate

e

 Pirdaus et al. / International Journal of Global Operations Research, Vol. 2, No. 2, pp. 68-75, 2024 74

Next, graph matrix testing will be carried out which aims to help design test cases in white box testing.

Table 3: Graph matrix testing
x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Results

1 1 0

2 1 1 1

3 1 0

4 1 1 1

5 1 0

6 1 1 1

7 1 0

8 1 0

9 1 1 1

10 1 0

11 0

Qty 5

Based on results testing Which has done obtained results total from 5 track Which There is there is 1 track Which

passes, 4 track Which is condition For catch wrong, and 0 lines the file.

4. Conclussion

Based on a series of tests carried out on the To-Do List Application web-based, it can be concluded that the system
has passed a series of tests try it with satisfactory results. The trial consisted of two main approaches, viz White-Box
Testing And Black-Box Testing. In Black Box Testing, plan the detailed tests cover the various scenarios on the page
login, page main and edit pages.

References

Arcuri, A. (2020). Automated black-and white-box testing of restful apis with evomaster. IEEE Software, 38(3), 72-78.

Golіan, N. V., Golіan, V. V., & Afanasieva, I. V. (2022). Black and white-box unit testing for web applications.

Gustinov, M. D., Azani, N. W., Al Ghani, R., Auliani, S. N., Maharani, S., Hamzah, M. L., & Rizki, M. (2023). Analysis of Web-

Based E-Commerce Testing Using Black Box and White Box Methods. International Journal of Information System and

Innovation Management (IJISIM), 1(1), 20-31.

Hussain, T., & Singh, S. (2015). A comparative study of software testing techniques viz. white box testing black box testing and

gray box testing. (IJAPRR), ISSN, 2350-1294.

Kato, J., Sakamoto, D., Igarashi, T., & Goto, M. (2014, October). Sharedo: to-do list interface for human-agent task sharing. In

Proceedings of the second international conference on Human-agent interaction (pp. 345-351).

Krishna Mohan, K., Verma, A. K., Srividya, A., & Papic, L. (2010). Integration of black-box and white-box modeling approaches

for software reliability estimation. International Journal of Reliability, Quality and Safety Engineering, 17(03), 261-273.

Kumar, M., Singh, S. K., & Dwivedi, R. K. (2015). A comparative study of black box testing and white box testing techniques.

International Journal of Advanced Research in Computer Science and Management Studies, 3(10).

Merrigan, K. K. A., Giraud, E. G., & Greene, C. (2021). The Critical To-Do List for Organic Agriculture: 46 Recommendations

for the President.

Praniffa, A. C., Syahri, A., Sandes, F., Fariha, U., Giansyah, Q. A., & Hamzah, M. (2023). Pengujian Sistem Informasi Parkir

Berbasis Web Pada UIN SUSKA RIAU Menggunakan White Box dan Black Box Testing. Jurnal Testing Dan

Implementasi Sistem Informasi, 1(1), 1-6.

 Pirdaus et al. / International Journal of Global Operations Research, Vol. 2, No. 2, pp. 68-75, 2024 75

Qian, Z. Z. J. (2018). Test Suite Augmentation via Integrating Black-and White-Box Testing Techniques. International Journal of

Performability Engineering, 14(6), 1324.

Syaikhuddin, M. M., Anam, C., Rinaldi, A. R., & Conoras, M. E. B. (2018). Conventional software testing uses the white box

method. Kinetics: game technology, information systems, computer networks, computing, electronics, and control, 65-72.

